Evidence Requirements Supporting Critical Decisions in Pharmacotherapeutics:

Proof of Concept

Vs

Proof of Value

RG Peterson MD, PhD, MPH
Executive Director
Drug Safety and Effectiveness Network
Canadian Institutes of Health Research
Faculty of Medicine
University of British Columbia

Proof of Concept

- The fundamental regulatory requirement for market authorization
 - High quality RCT new drug vs placebo
 - RCT's limit bias and minimize random chance
 - Extrapolation to large populations may be limited
 - Safety information may be limited
- POC drives design of Phase 2 and Phase 3 RCTs
 - High failure rate for new drugs in Phase 2
 - High percentage of kill decisions are strategic

Limitations of RCT's in POC

- Typically 2-arm, new drug vs placebo
- Only a few questions can be addresses in a single RCT
- RCT's powered for efficacy outcome have limited safety data
- RCT's powered for safety have a narrow focus
- Limited extrapolation to populations not specifically included in RCT for subset analysis

Limitations of POC Studies

- Little information on long term use
- *Little information* on any but the most frequent safety issues
- Little information on drug interactions
- *Little information* in full target population for the marketed product
- Little information comparing to existing drugs
- *Little information* regarding appropriate utilization

Limitations of POC Requirements

At the time of Market Authorization, we really do not know a lot about a new drug.

Evidence Required for Health Technology Assessment

- Information on long term use
- Information on population safety issues and their costs
- Information on drug interactions
- Information in full target population for the marketed product
- Information comparing to existing drugs
- Information informing appropriate utilization
- Cost effectiveness estimates

Economic Models

- Based upon direct comparison
 - Preferred, vary based upon assumption of equal efficacy (cost minimization) or superior efficacy (incremental cost effectiveness ratio)
- Based upon indirect comparison
 - Require stricter rules than simple meta-analysis
 - Difficult to agree upon appropriate assumptions
 - Wide variations within sensitivity analysis
- Low quality evidence input yields low quality estimations in cost-effectiveness

Non-inferiority Margins

- Basis of claim "Proven equivalent by non-inferiority...."
- Stipulation of quantum in statistical test of "not much worse than..."
- Requires both statistical and clinical basis for the margin
- POC may be more lenient than POV
 - When the NI is "generous", is the payer willing to give away benefit of the older drug? (e.g., 20%, 1 in 5)

Post Hoc Data Analysis

- May be basis for sub-population efficacy claims
- Increasingly depended upon in economic models
- Frequently the basis for requesting payment decisions as second or third line therapy
- Perversion of RCT design strengths
 - Expect that an arrow is shot at a target, not that an arrow is shot, then the target painted around it
- "Data Mining" in Observational Studies

Open label extensions

- Often cited in clinical practice guidelines for efficacy as well as safety
- Magnifies bias issues from unblinding
- Removes concurrent assessment of "best practice"
- Often outcome measures are relaxed, incompletely reported, or inconsistently assessed.
- Need for objective patient level reporting

Methodology Issues

- Appropriate surrogate outcome measures, exclusion criteria, length of trials in POC vs placebo
- Appropriate active comparators
- Trial design for non-inferiority studies
- Pre-declared subpopulation analyses
- Open label extensions
 - Strengthen data requirements, build in comparisons
- Confidence on reliability of Observational Data