

Carlo De Angelis, RPh, PharmD
Clinical Pharmacy Coordinator - Oncology
Department of Pharmacy & Division of Clinical Pharmacology and Toxicology

Sunnybrook Health Sciences Centre Associate Professor, Faculty of Pharmacy, University of Toronto

Financial Disclosure

I have received financial support for research, Speaker consultant fees or honoraria from the Following Pharmaceutical Manufacturers:

- Amgen
- Merck Frosst
- Ortho Biotech
- Pfizer Oncology
- Roche Oncology
- Sanofi-Aventis

Learning Outcome Objectives At the end of this presentation you

At the end of this presentation you will be able to:

- Discuss the difference between traditional anticancer therapy and targeted therapy
- Define targeted anticancer therapy
- Discuss challenges/opportunities in evaluation and use of targeted agents

Cancer Therapeutic Modalities

- Surgery
 - Role in prevention, diagnosis, treatment (removal of the cancer) and palliation
- Radiation
 - Role in treatment (killing of cancer cells) and palliation
- Systemic Therapy
 - Role in prevention, treatment (killing of cancer cells) and palliation

Characteristics of Traditional Antineoplastic Agents

- Cytotoxic
- Nonspecific effect on cell division
- Cause cell death by damaging DNA
- Mechanism of action not always understood in detail

Development of Traditional Antineoplastic Agents

Phase I

- Patients with advanced disease
- Principle aims
 - Toxicity profile
 - · Dose limiting toxicity
 - · Maximum tolerated dose
 - Dose and schedule for Phase II trials
- Limited pharmacokinetics
- · Preliminary evidence of activity

Development of Traditional Antineoplastic Agents

Phase II

- · Patients with or without advanced disease
- Tumour type based on
 - In vitro or xenograft information
 - Observed response in Phase I trials
 - Tumour type where there are few active agents
- Principle aims
 - Does agent have activity
 - · Is level of activity acceptable
 - Verify toxicity profile
- · Combination with other agents
- · Expand pharmacokinetic data

Development of Traditional Antineoplastic Agents

Phase III

Comparison with standard agents/regimens

Phase IV

- Expand knowledge base in special populations
 - · Patients with impaired organ function
 - · Children, elderly
 - · Confirm clinical benefit

History of Systemic Cancer Therapy Chabner BA et al. Nature Reviews Cancer 2005

Limitations of Cytotoxic Drug Development

- Animal modules useful but not reliable predictors of activity in humans
- Tumours are genetically heterogenous
 - Response in subsets of patients
 - Subclones of cells are inherently or develop resistant

Correlation of Xenograft Response and Clinical Response Johnson JI, et al. Br J Cancer 2001

The Acquired Capabilities of

Cancer Hanahan B & Weinberg RA. Cell 2000

- Self sufficiency in growth signals
- Insensitivity to growth inhibitory signals
- Evasion of programmed cell death
- Limitless replication capability
- Sustained angiogenesis
- Tissue invasion and metastasis
- Genomic instability

What is Targeted Therapy?

"An agent directed against predetermined & well-defined extracellular, transmembrane, or intracellular molecules involved in pathways controlling cellular growth, differentiation, transcription, or angiogenesis"

Shaheen PE, et al. Cancer Investigation 2006

Ideal Characteristics of a **Targeted Therapy Agent**

- · High specificity & affinity for target
- Good oral absorption
- Metabolically stable Long half-life
- No interaction with cytochrome P450
- Favourable toxicity profile

Goal of Targeted Therapy Development Targeted Drug Dose Response Curve В (%) of maginum) Britact 1,000 M Sunnybrook Sunnybrook Dose

Challenges in Development of Targeted Agents

- Cytostatic instead of cytotoxic
- Traditional Phase I study design/endpoints irrelevant
 - Dosing based on body surface area not applicable
 - · Wide therapeutic window
 - · MTD dose strategy may not applicable
- Not all patients or tumour types express target

- Biological understanding of target inhibition
- Reliable, sensitive, validated assay for presence of target or pathway activity
- · Assay to measure inhibitory effect
- What does target do in normal cells
- When/how should "response" be measured
- Intermittant versus continuous administration/inhibition
- Use alone or in combination

Cytotoxic versus Targeted Drug Development

at MTD

Fox E et al. Oncologist 2002

Empirical Targeted Discovery Cell based **Receptor based** MOA Unknown **Basis for selection Effect Cvtotoxic Cvtostatic Specificity Nonselective Selective** Dose/ Pulse/cyclical **Continuous**

schedule Sunnybrook

Oral Anticancer Agents

- Imatinib Gleevec®
- Gefitinib Iressa®
- Erlotinib Tarceva®
- Sunitinib Sutent[®]
- Sorafenib Nexavar[®]
- Lapatinib Tykerb[®]

Imatinib

- Competitive inhibitor of Bcr-Abl tyrosine kinase
- Indications
 - Philadelphia chromosome positive CML and ALL
 - CML in blast crisis, accelerated phase or after interferon failure
 - Gastrointestinal Stromal Tumours
- Daily dose 400 mg

Philadelphia Chromosome

IRIS Study O'Brien SG, et al. N Engl J Med 2003

Resistance to Imatinib

- Bcr-Abl point mutations which affect binding of imatinib
- Different point mutations have different prognostic outcomes
- Point mutations are both preexisting and are acquired
- Mutations to second generation inhibitors have been identified

Gefitinib

- Selective inhibitor of epidermal growth factor receptor tyrosine kinase
- Indications (NOC/c)
 - Locally advanced or metastatic NSCLC
 - EGRF positive or unknown
 - Failure to platinum based & paclitaxel chemotherapy
- · Daily dose 250 mg

Sunnybrook

Erlotinib

- Selective inhibitor of epidermal growth factor receptor tyrosine kinase
- Indications
 - Monotherapy for patients with locally advanced or metastatic NSCLC after failure of at least 1 prior chemotherapy regimen
 - EGFR expression positive or unknown
- · Daily dose 150 mg

Sunitinib

- Multitargeted tyrosine kinase inhibitor
 - Platelet-derived endothelial growth factor receptors, vascular endothelial growth factor receptors and others
- Indications
 - Gastrointestinal stromal tumour (GIST) after imatinib failure
 - Metastatic renal cell carcinoma clear cell histology, after interferon failure

Sunitinib

Dosing

- Starting dose: 50 mg qd, 4 weeks on/2 weeks off
 - Reduce off period to 1 week if well tolerated
- DL 2: 50mg qd, 2 weeks on/1 week off
- DL 3: 37.5 mg qd, 4 weeks on/1 week off
 - If tolerated 37.5 mg continuously
- DL 4: 25 mg qd, 4 weeks on/1 week off
 - · If tolerated 25 mg continuously

Sunitinib - Skin Toxicity PPE

Grade 2

Monoclonal Antibodies

- Alemtuzumab MabCampath[®]
- Bevacizumab Avastin®
- Ibritumomab Zevalin[®]
- Rituximab Rituxin[®]
- Trastuzumab Herceptin[®]

Rituximab

- Chimeric mouse-human monoclonal antibody
- Binds to CD20 antigen expressed on Blymphocytes and > 90% of B-cell lymphomas
- Treatment of CD20 positive low grade, follicular or diffuse large B-cell NHL
- 375 mg/m² day 1 of each CHOP cycle
- Maintenance 375 375 mg/m² day 1 g 3 monthly

Trastuzumab

- Humanized monoclonal antibody
- Binds to HER2-neu
- Treatment of HER2-neu postive breast cancer
- 8 mg/m² LD followed by 6 mg/m²
 MD q 3 weekly x 1 year

Bevacizumab

- Humanized monoclonal antibody
- Binds to VEGF
- First line treatment on metastatic colorectal cancer in combination with fluorouracil containing regimen
- 5mg/m² day 1 of chemotherapy cycle

Bevacizumab Clinical Activity

Hurwitz H, et al. N Engl J Med 2004

End Point	IFL plus Placebo	IFL plus Bevacizumab	P Value
Median survival (mo) Hazard ratio for death	15.6	20.3 0.66	<0.001
One-year survival rate (%)	63.4	74.3	< 0.001
Progression-free survival (mo) Hazard ratio for progression	6.2	10.6 0.54	<0.001
Overall response rate (%) Complete response Partial response	34.8 2.2 32.6	44.8 3.7 41.0	0.004
Median duration of response (mo) Hazard ratio for relapse	7.1	10.4 0.62	0.001

- Traditional Systemic Pharmacology
 - Improved analytical methodology
 - Population pharmacokinetic modeling
- Pharmacodynamic Endpoints
 - Patient survival, tumour regression, Partial versus complete response
 - · Confounding affect of use of multiple agents
 - Measurement of drug action in blood or tumour
 - DNA adducts in peripheral blood lymphocytes
 - Incorporation of nucleotide analogs into DNA
 - PCR to measure Bcr-Abl gene in CML
 - Novel imaging techniques (PET) for drug, metabolite or surrogate markers

Clinical Pharmacology Developments in Oncology

- Pharmacogenetic Determinants
 - Polymorphisms in drug ADME
 - Dihydropyrimidine dehydrogenase & Tiopurine methyltransferase, Methylenetetrahydrofolate reductase
 - Cytochrome P450
 - UDP-glucuronosyltransferases
 - Transporter proteins
 - · Role of single nucleotide polymorphisms in drug metabolizing genes
 - · Tumour regulatory genes
 - Methylguanine methyltransferase, Thymidylate synthase,
 - Microarray technology
- Integrated modeling

Challenges and Opportunities of Targeted Therapies

- Optimizing therapy
 - Selection of patients
 - Tumour gene expression profile
 - · Patient genetic profile
 - · Individualizing therapy
 - Pharmacogenetic covariates of drug metabolism, Therapeutic drug monitoring
- Evaluation of response
- Monitoring toxicity
- Use of targeted agents in combination with "traditional" antineoplastic agents
- Pharmacoeconomics

Make A Difference For Your Patient

