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Presentation outline 

1. Confounding by indication, protopathic bias 
 

2. Cohort restriction 
• The PPI/HCAP example 
 

3. Some thoughts on propensity scores 
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Background 

• Confounding by indication 
 
• Indication for drug use is responsible for the drug 

use and the outcome.  Any relationship between 
the two is spurious. 
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Background 

• Protopathic Bias 
 
• occurs when a drug treatment is initiated to treat 

the first symptoms of the disease which is not yet 
diagnosed 
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Proton Pump Inhibitors (PPIs) and 
Hospitalization for Community Acquired 
Pneumonia (HCAP) 

• PPIs 
• main action is a pronounced and long-lasting 

reduction of gastric acid production 
• one of the most widely sold drugs in the world 
• Nexium, Prevacid, Prilosec 
 
 



Proton Pump Inhibitors (PPIs) and 
Hospitalization for Community Acquired 
Pneumonia (HCAP) 

Canadian Medical Association Journal  
Eom et al., 2011 
• Systematic review and meta-analysis of acid 

suppressive drugs and risk of pneumonia 
• Looked at observational studies (n=8) and RCTs 

(n=23) 
  



Proton Pump Inhibitors (PPIs) and 
Hospitalization for Community Acquired 
Pneumonia (HCAP) 

Canadian Medical Association Journal  
Eom et al., 2011 
•  observational studies for PPIs and pneumonia  

• OR = 1.27  (95% CI 1.11 – 1.46)  all 

• OR = 1.34  (95% CI 1.14 – 1.57)  community 
acquired only 



Proton Pump Inhibitors (PPIs) and 
Hospitalization for Community Acquired 
Pneumonia (HCAP) 

Canadian Medical Association Journal  
Eom et al., 2011 
•  Interpretation 

• “Use of a proton pump inhibitor or histamine 
receptor antagonist may be associated with an 
increased risk of both community- and hospital 
–acquired pneumonia 



Proton Pump Inhibitors (PPIs) and 
Hospitalization for Community Acquired 
Pneumonia (HCAP) 

Problems? 
 
• PPIs are prescribed for Gastroesophageal Reflux Disease 

(GERD), which is an independent risk factor for 
pneumonia 

• protopathic bias - undiagnosed pneumonia leading to 
prescription of a PPI 
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Proton Pump Inhibitors (PPIs) and 
Hospitalization for Community Acquired 
Pneumonia (HCAP) 

Canadian Medical Association Journal  
Eom et al., 2011 

 
 PPI Duration 
  <7 days    OR = 3.95  (2.86 – 5.45) 
  <30 days OR = 1.61  (1.46 – 1.78) 
  30-180 days OR = 1.36  (1.05 – 1.78) 



Challenge:   
 
How to construct a cohort study using 
administrative data that can minimize bias 

The team gastroenterologist noted that a small portion of 
new NSAID prescriptions are combined with a new 
prophylactic PPI or H2RA prescription 
 
These individuals are unlikely to have undiagnosed 
pneumonia, and significantly less likely to be suffering from 
GERD 



Results:   
 
 There are a lot of new NSAID users (at least 365 days with 

no NSAID) in the combined data 
 N = ~4.24 million 
About 2.3% are concurrently filling a new PPI prescription 
(at least 365 days with no PPI) 
 N = ~97000 



 Filion, Chateau et al., Gut. 2014  
  6 month cumulative incidence of HCAP 
 
 



What if we did things the typical way:   
 
 MANITOBA results: 

 
 

        Exposed (PPI User)                Unexposed      Age- and Sex-Adjusted         Fully Adjusted
Comparison No No Odds 95% CI Odds 95% CI

Event Event Event Event Ratio Ratio
NSAID 192 72506 266 131831 1.27 1.05 - 1.52 1.24 0.96 - 1.59
Statin 297 94377 185 121396 2.01 1.66 - 2.43 1.71 1.29 - 2.26
Antidepressant 304 111455 310 175725 1.15 0.98 - 1.35 1.18 0.96 - 1.46
ACE 252 95159 304 108584 1.13 0.96 - 1.34 1.08 0.85 - 1.37



What if we did things the typical way:   
 
 MANITOBA results: 

 
         Exposed (PPI User)   Unexposed (NSAID User)       Age- and Sex-Adjusted         Fully Adjusted

Exposure No No Odds 95% CI Odds 95% CI
Duration Event Event Event Event Ratio Ratio

14 day 29 72669 23 132074 2.21 1.28 - 3.81 2.66 1.29 - 5.48
30 day 41 72657 53 132044 1.35 0.90 - 2.03 1.64 0.97 - 2.79
90 day 104 72594 142 131955 1.28 0.99 - 1.65 1.19 0.85 - 1.68



Statins and Diabetes 
• FDA Advisory 

 
• Confounding by indication 
• Prevalent diabetes needs to be removed 

 
• Study patients admitted to hospital for a CV event 

where diabetes was not reported in the DAD (discharge 
abstract) 

 



Statins and Diabetes 
• Secondary prevention cohort 

 
• Received a new statin within 90 days of hospital discharge 

(new user with 1 year washout) 

• Diabetes defined as occurrence of a subsequent 
hospital discharge with a diabetes diagnosis or a 
new prescription for insulin or oral antidiabetic 
medication 



Colin R Dormuth 
et al. BMJ 
2014;348:bmj.g32
44 



Another approach not tested… 

• Monomaniac prescribers 
 

• Study only patients treated by this subset of physicians 
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Propensity Scores 
 
• High Dimensional Propensity Score 

algorithm 
• Inverse Probability of Treatment 

Weights or IPTWs  



FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE 
 

• Cannot Observe…  
 
The same person under both conditions 



Average Effects 
• Effects vary from individual to individual 

 
• Average effect tells us… 

“the effect for a person--at random-- from our group.” 
 
 

How do we get this “average effect”? 
 

Compare average outcomes  
 



Average Effects 
 

 
• One state: the group gets the drug 
• One state: the group does not receive the drug 
• Difference in average outcomes between the two is the average 

effect of the drug 
  

 



FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE 
CANNOT OBSERVE GROUP under BOTH STATES 

• Groups that we can actually observe 
• Those that really did receive the drug 
• Those that did not receive the drug 
 

• Ask: Are these two groups comparable? 
• Minimize possibility that observed differences are due to confounding 

 

• Strategies to deal with confounding: 
• Multiple Regression 
• Matching 
• Propensity Score Methods 



The Propensity Score—Review 
• The Propensity Score: Probability that person is exposed: 

The probability that the person receives the drug 
 
 



The Propensity Score--Review 
• If probability (aka propensity score) is close to 1 

• —VERY LIKELY to receive the drug given observed 
covariates 

• If probability (aka propensity score) is close to 0 
• —VERY UNLIKELY to receive the drug given observed 

covariates 
 

• Use propensity score to make and compare comparable 
groups 
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Weight Population to Estimate Treatment Effects 
• Analytic Sample: Everyone Eligible to receive the drug: 

 
 

• Treatment Effects 
 
• What is the average effect of the drug among all of the people who could get 

it? 
 

• What is the effect of the drug among the people who ACTUALLY received it? 
 



Weights: ATE 

• Average Treatment Effect :  
Imagine we take EVERYONE in the TARGET POPULATION… 
• EVERYONE receives the drug 

COMPARED WITH… 
• EVERYONE does not receive the drug 

 

𝑊𝑊𝑊𝑊𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸  = 𝐹𝐹𝐹 ∗
1
𝑃𝑃

+ 1 − 𝐹𝐹𝐹 ∗
1

1 − 𝑃𝑃
 



Age at Index Date
Biological Sex

Income Quintile 1 - Lowest
Income Quintile 2
Income Quintile 3
Income Quintile 4

Income Quintile 5 - Highest
3019 UNSPECIFIED PERSONALITY DISORDER
3019 UNSPECIFIED PERSONALITY DISORDER

3059 OTHER, MIXED, OR UNSPEC DRUG ABUSE
3059 OTHER, MIXED, OR UNSPEC DRUG ABUSE

311  DEPRESSIVE DISORDER, NOT ELSEW CLA
79 UNSPEC DISORD REFRACTN,ACCOMMODATN

490  BRONCHITIS, NOT SPEC ACUTE/CHRONIC
7299 OTH UNSP DISORDERS OF SOFT TISSUE
7099 UNSP DISORDER SKIN, SUBCUTAN TISS

3149 UNSPECIFIED HYPERKINETIC SYNDROME
4722 CHRONIC NASOPHARYNGITIS

J01F MACROLIDES AND LINCOSAMIDES
N02A OPIOIDS

N06A ANTIDEPRESSANTS
P03A ECTOPARASITICIDES

N04A ANTICHOLINERGIC AGENTS
N06B PSYCHOSTIMULANTS AND NOOTROPICS

J07B VIRAL VACCINES

Standardized differences

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

unweighted

Average Treatment Effect
(ATE)



Thank you 
Visit us at www.cnodes.ca 
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Objectives of the CAN-AIM project 
• CAnadian Network for Advanced Interdisciplinary Methods for 

comparative effectiveness research (CAN-AIM) network is a 
pan-Canadian network of >35 researchers from 12 
universities, in 6 provinces, funded by the Drug Safety or 
Effectiveness Network (DSEN) of the CIHR to: 
1) Develop and Validate new Methods for improving analyses of 

population-based studies of Safety and Effectiveness of 
Drugs, with focus on Prospective Studies (time-to-event 
analyses) 

2) Apply these new methods to address Queries from Health 
Canada (and provincial agencies) regarding safety or 
effectiveness of specific drugs used by Canadians  



CAN-AIM map 



Confounding: Basic Concepts  
• Confounding of the estimated Association between ‘Exposure’ (X) and 

‘Outcome’ (Y) occurs due to a failure to account for 
       Another Variable (‘Confounder’), Associated (causally or ‘just by chance’)  

with Both Exposure & Outcome   

• Un-Measured (un-observed) Confounding is a major problem in Observational, 
Population-based studies of Drug Safety or Effectiveness where some potential 

       Confounder(s) ‘U’ are Not Recorded i.e. un-measured 
       (common in Large Administrative  Database studies) 
       [Walker Epidemiology 1996; Wolfe et al J Rheum 2002]  

• Then, the Estimated X ⇒ Y association will be Biased with the Direction and 
Severity of the Bias** depending on the pattern of  

       U ⇔ X and U ⇒ Y associations   
       (** e.g.,  
        (i) inducing a Spurious association = Type I Error;  
        (ii) Under- or Over-estimation of its strength; or  
        (iii) in extreme cases: Reversal of the direction of the Association) 



Southern Europe (healthy Mediterrean diet + ~40% smoking-
⇒ ~ 200 CVD deaths/100 K) 

versus North America (fast food + ~ 20% smoking  
⇒ ~ 400 CVD deaths/100 K) )  



If DIET is NOT Measured (or accounted for),  
Smoking will appear ‘Protective’ against Coronary Disease 



Confounding by Indication 
• Confounding by Indication is a Major Source of Bias in Observational 

Pharmaco-Epidemiological Studies of Drugs Effectiveness/Safety  
       [Walker et al, Epidemiology 1996; Avorn, NEJM 2007; Patorno et al, PDS 2015] 

• Such Studies usually rely on Large Administrative Databases (to 
ensure adequate Power & Precision) [Skegg et al, Stat Med 2001], that do NOT 
provide information on such Important Risk Factors as e.g. Disease 
Severity, Smoking, Obesity, Blood Pressure or Lab Tests/Biomarkers 

         [e.g., Wolfe et al, J Rheum 2002]   

• Yet, in real-life Clinical Practice, (i) Choice of Drugs or Treatments 
depends on several Clinical and Socio-demographic patient’s 
characteristics, that (ii) may also Affect the Outcome, i.e. Act as 
Potential Un-measured Confounders of the Treatment Effect 



Sources of Confounding by Indication 
in Pharmaco-epidemiology 

• (A) People are prescribed Drugs because they have a Disease or are at 
Increased Risk of Developing a Disease  

• (A) ⇒ (B) : those Prescribed a Drug will be generally Sicker/more Vulnerable 
and, thus, will have Worse Outcomes than those who are Un-treated   

• (C) Large Admin Databases do NOT record Disease Severity and many Clinical 
Risk Factors 

• {(B) & (C)} ⇒ spurious ‘evidence’ of an Association between Use of Drugs and 
Bad Outcomes (High Risk)  

• However, this “Association” in fact reflects the ‘Reversal Causality Bias’: 
patients receive drugs Because of being at high risk (NOT vice versa) 

• Unmeasured Confounding by Indication = Harmful Effects of 
Drugs/Treatments/Interventions 



“be careful about Adverse Effects of these Weight 
Watching programs: we noticed that many patients 

diagnosed with Diabetes have recently started one…” 

OUTCOME = 
Diabetes  

EXPOSURE = 
 Weight 

Reduction 
Program  

OBESITY 
(NOT 

recorded) 



Need to Develop & Validate Alternative Methods 
to deal with Unmeasured Confounding 

• Unmeasured Confounding is a Complex Phenomenon and both its 
Sources & Impact vary considerably depending on the study design, 
data structure, data availability etc.  

• Very Unlikely to Ever find a Panaceum solution  
     (“one method fits all”) 

• Thus: Alternative Methods have to be Developed for Different 
(relevant) Situations and under Different (Plausible) Assumptions 

• It is Essential to Validate New Methods & Systematically Assess and 
Compare their Performance, ideally  

      through Simulation Studies (where the Estimated Effects are 
validated against the Known ‘True’ Effects) 



Overview of Existing Analytical Methods for 
Unmeasured Confounding in Pharmaco-epi  

• General Lack of Appropriate Methods* until early 2000’s 
     [review by McMahon, Pharmacoepi & Drug Safety 2003]   

• * Exception: Bias Sensitivity Analyses: 
      (i) assume Hypothetical Confounder(s) U with specific U ⇔ X & U ⇒ Y 

associations, then (ii) assess, through Analysis [Greenland, Int J Epi 
1996] or Simulations [Groenwold et al, Int J Epi 2010] how adjusting for 
U affects the estimated X ⇒ Y association    

      (example of Application: [Pilote et al, Ann Int Med 2004]) 

• Recent High Dimension Propensity Score (hdPS) method:  
      [Schneeweiss et al, Epidemiology 2009]  
      (example of Application: [Kumamaru et al, J Clin Epidemiol 2016]): 
      hdPS approach was NOT Systematically Evaluated  



Overview of Existing Analytical Methods for 
Unmeasured Confounding in Pharmaco-epi (Cont-d) 

• Instrumental Variables (IV) approach based on Physician 
Prescribing Preferences [Brookhart et al, Epidemiology 2006]: 
– Advantage: if underlying assumptions are correct, the IV approach 

Removes Bias due to Unobserved Confounding by Indication [Brookhart et al 
2006; Abrahamowicz et al 2011]; 

– Limitations:  
• Depends critically on several assumptions [Brookhart et al 2006]; 
• Serious VARIANCE INFLATION [Ionescu-Ittu et al 2009; 2012] 
• Difficult to Adapt to Time-to-Event analyses 

• The “Missing Cause” approach [Abrahamowicz et al, Stat Med 
2016] 
– Assumptions similar to IV approach 
– Not yet evaluated for time-to-event analyses 



Conclusions 

• Each of the existing methods relies on important assumptions 
and is applicable only in specific situations 

• Only very few methods have been developed and validated 
for Time-to-Event analyses that are essential for prospective 
(or retrospective) cohort studies 

• Need to Develop & Validate NEW METHODS   



Background: Administrative Data 
• Pharmacoepidemiologic studies [Skegg, Stat Med 2001]: 

– Rely on Administrative Databases (“Main database”) 
– Data collected routinely/electronically (e.g. for administration of 

health services / insurance) 
 

• Advantages: 
– Large N & Long follow-up ( Power to detect even weak 

associations) 
– Population-based (No selection bias) 
– Complete information on drug prescriptions, major 

comorbidities, hospital admissions, health outcomes…  



• Data not collected for research purposes 

• Often no measurements on important potential confounders 
[1] e.g.: 
– Lifestyle characteristics 
– Laboratory tests 
– Disease severity [1]  

• Unmeasured confounding is an important problem! [2, 3, 4] 
[1] Wolfe et al, The Journal of Rheumatology 2002 
[2] Patorno et al, PDS 2015 
[3] Avorn, NEJM 2007 
[4] Walker,  Epidemiology 1996 

Disadvantages of Administrative Data 



Conceptual Framework:  
Determinants of Treatment Choices 

RECORDED PATIENT 
CHARACTERISTICS 

UN-RECORDED 
PATIENT 

CHARACTERISTICS 

(U) 

TREATMENT 
CHOICE 

 
OUTCOME 

 



Clinical datasets – a solution? 

• some important additional confounders may 
be recorded in a clinical dataset (“Validation 
subsample“= VS) [Sturmer et al, Am J Epidemiology 2005] 

• VS data are collected for research purposes  
(e.g. prospective cohort following persons with a specific disease, & 
records also drug use & clinical outcomes of interest) 

– Advantage:  
Measurement of important confounders (Avoids bias) 

– Disadvantage:  
Smaller size (Inadequate power & precision) 



Bias/Variance trade-off in Pharmaco-Epi 

• Large Administrative Database studies  ensure adequate 
Power and Precision, but fail to measure important 
Confounders, leading to BIAS in the Treatment effect 
estimates 

• Research-oriented Clinical Cohort studies provide data on 
Confounders un-measured in the large studies but their Small 
Sample Size, combined with Rare Events, Inflate VARIANCE, 
resulting in Insufficient Power and Imprecise Estimates  



Proposed Solution 

• We Develop New Statistical Methods in order to  
      COMBINE the STRENGTHS of the 2 Data Sources: 

(1) High Power/Precision of the Large Administrative Databases 
& 
(2) Adequate Control for Confounders measured only in Clinical 

Cohort studies (with Small effective Sample Sizes), used as 
“Validation Samples” (VS) 



X Y 

C 

Main database: {C,X,Y} 



X Y 

C 
U Main database: {C,X,Y} 

Validation subsample: {C,U,X,Y} 



Current methods, which use additional data on potential confounders 
available only in the smaller Validation Sample to account for 
unmeasured confounding in the main (large) database include: 

1. Propensity Score Calibration (PSC)  
   [Stürmer et al, Am J Epidemiol 2005] 

2. Bayes PS  
   [McCandless et al, JASA 2012] 
 

• Only PSC extended to Time-to-Event analyses but requires strong 
“surrogacy assumption”   
[Stürmer et al, Am J Epidemiol 2007] 

Current methods to use VS data  



Propensity Score Calibration (PCS): 
4-step Implementation [Sturmer et al, AJE 2005] 

1) In the Validation Sample (VS) estimate 2 versions of 
Propensity Score (PS): 
i. ‘Error Prone’ PSEP (adjusted Only for confounders measured in the 

main database) 
ii. ‘Gold Standard’ PSGS (adjusted for All  confounders, including those 

measured in the VS only) 

2) In the VS: fit the linear regression of PSGS on PSEP 

3) In the Main Database: estimate PSGS  for each subject, based 
on the model fit in step 2 (as a function of PSEP) 

4) In the Main Database: fit the outcome model using PSGS  
estimates from step 3 for adjustment or matching 



PSC: Surrogacy Assumption 

• PSC relies on surrogacy: PSEP independent of outcome 
conditional on PSGS and exposure 

• Holds when direction of confounding of U and C is the same 

• Adding an unmeasured confounder to the PS will increase the 
strength of the association in same direction 

• If directions differ, including an unmeasured confounder in PS 
will decrease the strength of the association, therefore, PSEP 
has stronger association with outcome than PSGS 

 

Direction of confounding = direction in which exposure-outcome 
relationship is biased if the confounder is not adjusted for 



Need to Extend the current methods 

a) Time-to-event (survival) analyses:  
– Both PSC and BayesPS have been validated for binary 

outcomes only, not time-to-event analyses, 
– Yet, pharmacoepi studies based on administrative 

databases usually rely on cohort design → time-to-event 
data (censoring) 

b) Both current methods use the PS: 
– PS captures confounder-exposure associations, but does 

not account for Confounder-Outcome associations 



Our Approach:  
Imputation of Missing Confounders 

General Idea: 
We propose to Impute Unmeasured Confounders, for all 
subjects in the main database, based on information in 
Validation Subsample regarding their Relationships with both  
(i) Exposure and (ii) Outcome 
[Burne & Abrahamowicz, Stat Med 2016] 
 

Challenge: 
How to represent the ‘Outcome’, which in the context of 
Survival Analyses, is Bi-Variate, i.e. includes 2 terms: 
(1) a Continuous measure of Follow-up Duration +  
(2) a Binary indicator of “Status” (Event or Censored) at the end of follow-

up? 



Our Approach: use Martingale Residuals to  
Impute missing confounders based on VS data  

• We propose to Use Martingale Residuals (MR) in imputation model 
      [Burne & Abrahamowicz, Stat Med 2016]: 

– MR’s contain info on lack of fit (‘bad prediction’ of individual 
outcomes based on measured variables) 

– Such ‘bad prediction’ may be informative about values of un-
measured confounders (U), which, by definition, must be 
associated with the outcome 
 

** Accounting for the Outcome should improve Imputation  
   [Moons et al, J Clin Epi 2006] 
 

• Yet, PS (used in previous methods) only captures relationship with 
exposure 



Rationale for using RESIDUALS 

• Residuals reflect the Discrepancies between: 

a) the Outcome Actually Observed for individual patients 
versus  

b) the Outcomes Predicted by the Model (that adjusts Only 
for the fully measured confounders) 

• Thus, e.g. a Large Positive Residual will suggest that we may 
be Missing an Important Risk Factor (that could ‘explain’ why 
the patient had an unexpectedly Bad Outcome etc.)   



An Early Epidemiological Puzzle:  
“Something does Not feel right: our Air is Clean, Water is Pure, 

we get Plenty of Exercise, everything we Eat is Organic, ... 
and yet Nobody Lives Past 30 ” 



 
DAG for the “Cavemen Epi puzzle”: 

CAVE Living = MISSING CONFOUNDER that is a  
common cause of Both: Exposure & Outcome and explains the 

apparent Discrepancy between Observed vs. ‘Expected’ Outcome! 

Unmeasured 
Confounder: 
LIVING in a 

CAVE 

Exposure:  
Healthy 

Diet/Lifestyle 

OUTCOME:  
Short Survival 

Counter-
intuitive 

ASSOCIATION 



“Proof of Concept”: Martingale Residuals 
Capture info on Un-measured Confounder 

Simulated Data (N ~ 12,000): 

• Outcome depends on Exposure (A), 2 measured confounders 
(X1, X2) and UN-measured Confounder U (range from 0 to 1), 

     with Higher values of U  High 

• Highest Martingale Residuals observed for subjects with Very  
Early Events (Shortest Survival) who have “Protective Values” 
of Exposure (A) and X1, X2:  

     Mean value of U for 100 Highest MR = 0.70 

• Lowest Martingale Residuals observed for subjects Censored 
at the Latest Time (Longest Survival) with High-Risk values of 
A, X1 & X2:    

     Mean value of U for 100 Lowest MR = 0.35 



Data Structure 
• Individual i’s data: {ti, δi, Xi, Ci, U1i,..., Uki} 

• ti, δi : time, indicator for event 

• Xi: exposure 

• Ci: all confounders measured in main database 

• For the i = n+1,..., N individuals in main database, U1i,... Uki are 
unmeasured 

• For the i = 1,..., n individuals in validation subsample, U1i,...Uki 
are measured 



Steps 1-3 of “Martingale Imputation” 

In the main database (i = 1,..., N), perform steps 1-2:  

 1. Fit Cox PH model dependent on X and C: 
 
 

2. Obtain Martingale Residuals M(i) from model in step 1  

 
In Validation Sample (i = 1,..., n) perform step 3:              
3. Estimate (separately for each U in U1, ..., Uk ) 
     expected distribution for U, based on     , X and C 
    (where      is obtained from step 2) 

}exp{)()( 210 iii CXtt γγλλ +=

M̂
M̂



Steps 4-6 of “Martingale Imputation”  

In the main database (i =1,..., N), perform steps 4-6: 

4. Impute individual values of each U by sampling from the 
respective distribution obtained in step 3 

5. Re-run Cox model to estimate effect of X adjusted for C and 
imputed values of U1,..., Uk 

6. Use bootstrap to obtain 95% CI’s for HR for exposure (X) 
from the model fit in step 5 



R program for MR Imputation 

• Current Link for the code used for the Simulations in the  
     [Burne & Abrahamowicz, Stat Med 2016] paper: 
     http://github.com/RMBurne/MR-based-imputation 

• Users familiar with R programming can adapt parts of the 
code to apply the method for analyzing real-life datasets  

• Alternatively, contact the authors for a new link (to be created 
in the next 2-3 weeks) for the more user-friendly code to 
implement the method (and example of an implementation) 

http://github.com/RMBurne/MR-based-imputation


Simulation Objectives 

1. Validate the proposed MR-based imputation, for 
different simulated data structures, in terms of: 
i. Lack of BIAS of the estimated log HR for ‘exposure’ &  
ii. Correct Coverage Rate of the bootstrap-based 95% CI’s 

2. Compare the Bias, SD & RMSE of the MR-based 
estimates with the results of: 
i. Conventional Cox model (adjusted only for C) 
ii. “Standard” imputation of U (based on X and C but not 

the outcome) 
iii. PSC (while Varying the Surrogacy assumption) 



Simulation Design: basic set-up 

• Full data (main database + validation subsample) N = 10,000 

• Validation subsample (VS) n = 1,000 (10%) 

• Cumulative incidence of event = 10% (90% censoring) 

• Binary (time-fixed) exposure 

• 2 confounders (C1, C2) measured in the main database 

• 2 additional confounders (U1, U2) measured only in validation 
subsample   



Simulation Design: ‘sensitivity analyses’ 

• 1,000 replicates per simulated scenario 

• Across different simulated scenarios we varied: 
i. Strength & direction of unmeasured confounding 
ii. Relationship of U and C with outcome and exposure so 

surrogacy either held or was violated to different extents 
iii. True HR for exposure 
iv. Censoring mechanism 
v. Validation subsample size (n=1,000, 500 or 250) 



   True HR Martingale 
Imputation 

Imputation 
without 

Martingale 

Conventional Cox 
PH PSC 

1 1 0.001 0.144 0.160 -0.012 

2 1.2 0.004 0.147 0.164 -0.009 

3 1.5 0.003 0.143 0.159 -0.013 

Comparison of BIAS in the exposure HR 
estimated with 4 models  

[n(VS) =1,000, moderate unmeasured confounding, surrogacy satisfied] 



Mean Squared Error (MSE) = (Bias)2  + Variance  
  compares the Overall Accuracy of the Estimates 

Moderate BIAS + Low Variance = Low RMSE NO Bias but High VARIANCE = High MSE 

(Root MSE) MSE = √ MSE (Lower RMSE = Better Accuracy) 



RMSE & SD of exposure HR estimated with 4 
methods  

[n(VS) =1,000, moderate unmeasured confounding, surrogacy satisfied] 
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Alter Martingale 

Imputation 

Imputation 
without 

Martingale 

Conventional Cox 
PH PSC 

4 
Strong 

unmeas. 
conf. 

0.020 0.328 0.363 -0.007 

5 
Weak 

unmeas. 
conf. 

-0.001 0.041 0.046 -0.013 

6 
Censoring 

mech. 0.003 0.146 0.162 -0.009 

Comparison of BIAS for various strengths of 
unmeasured confounding & random censoring 

[n(VS) =1,000, true HR = 1, surrogacy satisfied] 



Coverage of the 95% Bootstrap CI’s 
(selected scenarios, 100 events in VS, Surrogacy satisfied) 

  Martingale 
Imputation 

Imputation 
without 

Martingale 

  Conventional Cox 
PH PSC 

1 94.8 46.1 37.4 93.5 

2 95.2 38.2 27.9 94.5 

3 94.8 41.3 32.2 93.8 

4 93.2 0.1 0.0 94.5 

5 94.4 90.0 89.3 94.6 

6 95.6 42.9 32.7 95.9 



Comparison of RMSE & SD for various strengths of 
unmeasured confounding (surrogacy satisfied) 
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4 = strong conf., 5 = weak conf., 6 = random censoring 



  Scenario Martingale 
Imputation PSC Results of SURROGACY Test 

  
Surr. viol. Unmeas. conf. Bias Bias Mean 

Surr. LR 
% Surr. pval 

< 0.05 

7 Strong Moderate -0.003 -0.303 <0.001 100.0 

8 Moderate Weak -0.003 -0.092 3.50 94.0 

9 Weak Moderate -0.003 -0.030 54.57 20.1 

10 Moderate Moder/Weak -0.001 -0.041 35.57 43.3 

11 Strong Moderate 0.005 0.137 3.50 93.2 

12 Weak Moderate 0.007 0.024 55.38 18.2 

Surrogacy Violated: comparison of BIAS of log(HR) for 
Martingale Imputation-based vs. PSC estimates  

[n(VS) =1,000, ~100 events, true log HR = 0, weak to moderate confounding by U] 
 



Impact of Surrogacy Violation ** on RMSE & SD 
(** sc. 7 & 11: Strong; sc. 8 & 10: Moderate, sc. 9 & 12: Weak)  
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  n (VS) Surrogacy Martingale 
Imputation 

Imputation 
without 

Martingale 

Conventional 
Cox PH PSC 

13 500 Met 0.000 0.154 0.162 -0.036 

14 500 Violated 0.002 -0.171 -0.180 -0.363 

15 250 Met 0.010 0.156 0.161 -0.047 

16 250 Violated -0.004 -0.180 -0.184 -0.425 

BIAS comparisons for different  
validation subsample size 

[True HR = 1, Moderate unmeasured confounding] 



RMSE & SD Comparisons for different  
N of the Validation Subsample (VS) 

(50 events in VS in sc. 13 & 15, OR 25 events in sc. 14 & 16) 
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RMSE of exposure estimates: 
MR-imputation vs  

Using ONLY VS data with (directly adjusted for U) 
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Summary of Simulation Results 

• Proposed Martingale-based Imputation: 
i. UN-BIASED estimates for All Scenarios considered  

ii. Usually the Best Overall Accuracy (lowest RMSE in Almost All 
Scenarios)  

iii. Performed as well as Propensity Scores Calibration (PSC)  IF the 
Surrogacy assumption was met or only slightly violated 

iv. Performed well even IF Surrogacy was Violated (in contrast to 
Large Bias & high RMSE’s of PSC estimates) 

v. Consistently  Improved Accuracy over standard Imputation 
based on U-X associations only 

vi.  Performed well even if Validation Subsample included as few 
as 25-50 Events 



Application # 1:  
use Glucocorticoids vs. type II Diabetes 

BACKGROUND: 

• Glucocorticoid (GC) therapy: common treatment for 
rheumatoid arthritis (RA) 

• Very effective in slowing disease progression 

• Potentially serious side effects, including diabetes mellitus 
type II 

• Published results of the GC – DM are ambiguous 
[Burne & Abrahamowicz, Stat Med 2016] 



Data: Main Database 

• CPRD (Clinical Practice Research Datalink): 
– RA patients in the UK, identified by a validated algorithm 
– Includes patient demographics, medical diagnoses, drug 

prescriptions... 
– Some potential confounders, including BMI, disability level, 

comorbidity index, not available 
– N = 16,898 
– # events = 1,665 (10%) 
– Mean follow-up = 6.5 years 
 

[Movahedi et al, Arthritis & Rheumatology 2016] 



External Validation Sample (VS) 

• VS = NDB  
    (National Data Bank for Rheumatic Diseases): 

– Longitudinal observational study of patients with RA in the US, 
created for research purposes  

– More rich confounder information, including BMI, disease 
severity (HAQ score), comorbidity 

– Also includes all those variables available in CPRD 
– N = 8,253 
– # events = 529 (6%) 
– Mean follow-up = 4.5 years 

 
[Wolfe and Michaud, Rheumatology 2011] 



Analyses 
• Time-to-Event analyses based on Multivariable Cox proportional 

hazards (PH) model 

• Time 0 = RA diagnosis  

• Event time = diagnosis of type II DM  

• Time-varying ** Exposure = binary indicator of the Current Use of 
GC 

• 2 Models in the CPRD database: 
– Conventional Cox’s model (adjusted only for confounders measured in the 

CPRD) 
– Cox model with MR-imputation of additional confounders (measured only in 

the NDB database)   

 



Comparison of the NDB vs. CPRD 
populations of RA patients  

Characteristics of the main database (CPRD) and validation data (NDB) 



Results: NDB Models 
Reduced model Full model 

HR 95% CI HR 95% CI 

Glucocorticoid use* 1.81 (1.45, 2.27) 1.48 (1.17, 1.86) 

Sex (Male = 1) 0.91 (0.73, 1.15) 1.00 (0.79, 1.27) 

Baseline Age 0.99 (0.99, 1.00) 0.99 (0.99, 1.00) 

NSAID use (before 
cohort) 

0.73 (0.59, 0.91) 0.73 (0.59, 0.90) 

Methotrexate use (TD) 0.81 (0.68, 0.96) 0.89 (0.75, 1.06) 

Hydroxychoroquine use 
(TD) 

0.70 (0.57, 0.87) 0.73 (0.59, 0.90) 

HAQ disability score (TD) 1.15 (1.01, 1.31) 

Comorbidity index (TD) 1.24 (1.17, 1.31) 

BMI (TD) 1.18 (1.10, 1.26) 

BMI2 (per 50 units) (TD) 0.93 (0.89, 0.98) 

* Current GC use modelled as a time-dependent variable. 



PRIMARY Results: CPRD analyses 

 
Reduced model Full model 

HR 95% CI HR 95% CI 

Glucocorticoid use* 1.38 (1.19, 1.59) 1.15 (0.99, 1.33) 

Sex (Male = 1) 1.29 (1.16, 1.43) 1.56 (1.40, 1.73) 

Baseline Age 1.02 (1.01, 1.02) 1.02 (1.01, 1.02) 

NSAID use (before 
cohort) 

1.07 (0.94, 1.22) 1.15 (1.01, 1.31) 

Methotrexate use (TD) 1.22 (1.06, 1.40) 1.28 (1.12, 1.48) 

Hydroxychoroquine use 
(TD) 

0.86 (0.64, 1.15) 0.91 (0.68, 1.22) 

HAQ disability score (TD) 1.52 (1.41, 1.64) 

Comorbidity index (TD) 1.36 (1.31, 1.41) 

BMI (TD) 1.28 (1.21, 1.35) 

BMI2 (per 50 units) (TD) 0.89 (0.86, 0.92) 

* Current GC use modelled as a time-dependent variable. 



Summary of the Results 

• NDB analyses indicated that several variables NOT measured 
in the main (CPRD) database are significant risk factors for DM 
II and that adjusting for these variables may attenuate 
considerably the estimated impact of current GC exposure 

• Consistent with these results, application of the proposed 
MR-imputation in the CPRD analyses resulted in an important 
reduction of the estimated effect of GC: from 1.38 (1.19,1.59) 
to a (marginally non-significant) 1.15 (0.99, 1.33) 



Next Step: extension to  
Marginal Structural Models 

• Marginal Structural Models (MSMs) are increasingly used to account for 
Time-Varying covariates that may both Confound and Mediate the 
effects of Treatment or Exposure  

      [Hernan et al, Epidemiology 2000] 

• MSM use Inverse Probability of Treatment Weights  (IPTW) to re-weight 
observations so as to create a `randomized' pseudo-population, in which 
covariates are balanced across the treatment groups  

• MSM require Assumption of  NO Unmeasured Confounders 

• No validated methods exist to deal with unmeasured confounding in 
MSM** 

** Exceptions, developed for Specific Data Structures: 
[Brumback et al, Stat Med 2004; Moodie et al, Int J Biostat 2008] 



Proposed MR-based MSM methods 

2 alternative methods, both use Martingale Residuals (MR)  
(see previous slides)  
to account for Time-Varying Confounder U(t) Measured Only in the VS,  
when estimating IPTW [Burne and Abrahamowicz, Stat Methods Med Res 2017] 

1) MR-based Multiple Imputation: 
        step 1:  use MR’s to impute individual values of U(t) 
        step 2:  use MR-imputed values to estimate IPTW  

2) MR-enhanced Regression Calibration of the PS: 

        Method akin to propensity score calibration (PSC)* but uses 
Martingale Residuals in the regression calibration model  

* [Sturmer et al, AJE 2005] 



Comparator methods 

3) Regression calibration of the PS: 
– Method akin to propensity score calibration (PSC)* 
– Use regression calibration to correct PS in main data, using data 

in VS 
– Corrected PS used in calculation of IPTW weights 

 
4) ‘Naive model’:  
       ignores U(t) (NOT measured in the main database) while 

estimating IPTW 
* [Sturmer et al, AJE 2005] 



Simulation objectives 

• To compare performance of 4 alternative estimators: 
– Naive MSM (IPTW not account for Unmeasured Confounder) 
– Regression calibration (RC) 
– MR-enhanced regression calibration (RC + MR) 
– Martingale residual-based multiple imputation (MR-based MI) 

• With respect to: Bias, standard deviation (SD), root mean 
squared error (RMSE) 

 

[Burne and Abrahamowicz, Stat Methods Med Res 2017] 

 



Simulation Design 

• Hypothetical cohort study with up to 10 visits 

• Binary, time-varying exposure A(t) 

• 4 measured confounders (2 baseline, 2 time-varying) 

• 1 unmeasured time-varying confounder U(t)  
     (available in VS Only) 

• Outcome data generated based on method by Young et al. 
[Lifetime Data Analysis 2010] 

• Nmain = 10,000, nVS = 1,000 

• 1,000 replications 



Simulation results: Bias 
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Simulation results: SD 
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Simulation results: RMSE 
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Summary of MSM Simulation Results  

• MR-based MI eliminated Bias and yielded more accurate 
estimates (lowest RMSE) than the other methods 

• RC of PS sometimes increased bias 

• Including martingale residual enhanced RC method 

• MR-based MI had larger variation than RC methods, but 
lowest RMSE (greatest overall accuracy) 



2nd Application: MSM analyses 

• Does persistence with DPP-4 inhibitor therapy reduce risk of 
hospitalization due to hypoglycemia in DM II? 

• Cohort of diabetic patients from Truven Health MarketScan  

• Inclusion criteria (for this application): 
– ≥ 1 ICD-9 code for type II Diabetes 
– initiating DPP-4 inhibitors (no prescription in prior year) 
– as third-line therapy (prior prescription to metformin & sulfonylurea) 

• 50,305 patients met criteria (Main Database)  

• Of those, 2,341 had ≥ 1 measurement of HbA1c available 
(‘internal’ Validation Sample) 



Analyses 
• MSM Cox PH models with IPTW  

• Time 0 = 1st prescription of DPP-4 inhibitors between 1 January 
2011 and 30 December 2014 

• Event = 1st Hospitalization for Hypoglycemia 

• Time-Varying Exposure = Current Use of DPP-4 inhibitors 

• Time-varying Confounder/Mediator (used to estimate IPTW), 
measured only in a small subset (VS)  =  

     updated value of HbA1c (important determinant of the initiation of 
the DPP-4 treatment)  

• Baseline covariates: age, sex, employment status, Charlson 
Comorbidity Index, and healthcare services utilization, in a 1-year 
period before the cohort entry 



Cohort characteristics 
Main Database   
(N = 47,964) 

Validation Sample  
(n = 2,341 with HbA1c) 

Event (hypoglycemia) 2867 (6%) 130 (5.6%) 

Follow-up (days): mean (SD) 591.9 (360.9) 592.9 (372.4) 

Days exp. to DPP-4: mean (SD) 248.9 (231.3) 216.3 (199.7) 

Baseline characteristics: 

       Age (years): mean (SD) 58 (11.1) 56.5 (10.1) 

       Charlson index: mean (SD) 0.4 (0.9) 0.4 (0.9) 

       Female: n (%) 19348 (40.3%) 1011 (43.2%) 

       Employed: n (%) 17875 (37.3%) 570 (24.3%) 

Characteristics in year prior to cohort entry: 

       Emergency department visits: n (%) 10000 (20.8%) 539 (23%) 

       Hospitalizations: n (%) 4528 (9.4%) 175 (7.5%) 

       ≥ 20 physician visits: n (%) 5495 (11.5%) 223 (9.5%) 

       Prior hypoglycemic event: n (%) 1925 (4%) 113 (4.8%) 

Time-varying characteristics: 

       Days exp. to other anti-diabetic: mean (SD) 475.6 (361) 458.8 (365.2) 

       Baseline HbA1c: mean (SD) - 8.7 (1.7) 

       No. HbA1c tests: mean (SD) - 2.3 (1.8) 



Results: Adjusted HR for current 
exposure to DPP-4 inhibitors 

Method HR 95% CI 

Naive 0.62 (0.47, 0.82) 

Regression Calibration 0.69 (0.59, 0.82) 

Regression Calibration + MR 0.69 (0.59, 0.82) 

MR-based multiple imputation 0.74 (0.57, 0.97) 

Validation sample* 0.84 (0.55, 1.27) 

Weights truncated at 99.7th percentile 
* Weight accounts for most recent HbA1c value 



Summary of Results  

• Minor impact of correcting IPTW for HbA1c: 
    HbA1c is a strong determinant of the DPP-4 Treatment but 

NOT associated with DM II risk 

• MR-based MI results confirmed conventional estimates, but 
reduced concern of unmeasured confounding by HbA1c 

• “Complete case” analysis (limited to VS) not adequate, low 
power, Wide Confidence Intervals that include HR=1 ( 
uncertainty: is there an association at all ?) 



Overall Conclusions  

• Efficient use of additional measurements available in smaller 
Clinical Validation Subsamples may avoid Bias due to Un-
measured Confounding and substantially improve the overall 
accuracy of the estimates  

• Proposed Martingale Residual (MR)-based Imputation 
provides a promising method for dealing with this important 
challenge in Survival Analysis and outperforms existing 
methods such as PSC 

• Applications confirm that MR-based imputation may 
substantially changed the estimated strength of the Drug use 
association with Adverse Events (e.g. GC vs. DM II) 



(selected) Directions for Future Research 

• Further simulations with More Un-measured Confounders (& 
different assumptions about 

     U-X, U-Y, U-C  associations) 

• Real-life Applications 

• Need to assess the performance of the MR-based imputation 
if Validation Subsample has different characteristics that the 
Main Database ? 



• THANK YOU 
 

• Michal.Abrahamowicz@McGill.ca 
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