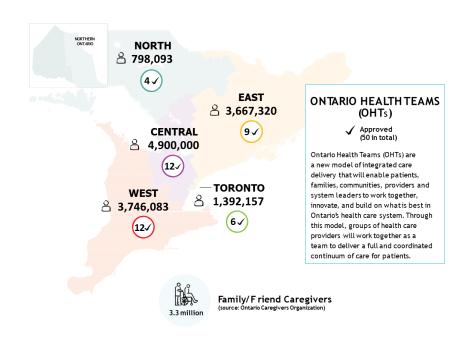
Ontario Health and OHTs

As an agency of the Government of Ontario, **Ontario Health** has been mandated to connect and coordinate our province's health care system in ways that have not been done before.

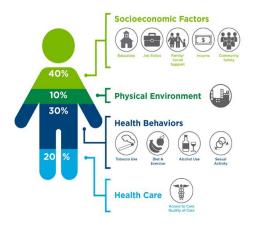


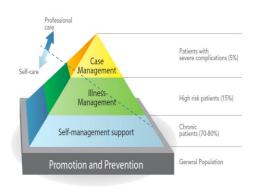
Population Health and Value-based Health Systems

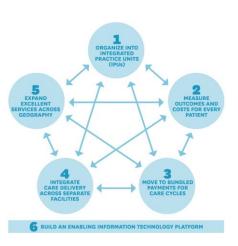
What goes into your health?¹

Population Health Approach²

Value-based Care – outcomes not volumes³







- Institute for Clinical Systems Improvement, Going beyond Clinical Wall, Solving Complex Problems (Oct 2014)
- 2. Adapted from Kaiser Permanente Risk Stratification Pyramid
- https://hbr.org/2013/10/the-strategy-that-will-fix-health-care, Michael Porter & Thomas Lee (Oct 2013)

Digital and Virtual Health as Enablers

Digital Infrastructure

- Provincial Client & Provider Registry
- Clinical Data Repository
- Clinical Viewers
- ONE ID
- Health Report Manager
- CHRIS
- Health Service Directories
- HIS, EMRs ...
- DHIEX Standards
- Population HealthManagement Infrastructure

(Virtual) Models of Care

- Video, audio, messaging
- Provincial OTN Clinical programs and Patient Access Sites
- Remote Patient Monitoring for Chronic Disease and COVID
- Virtual Mental Health and Addictions
- Virtual Visit Verification
- Appropriate Use & Quality

Targeted Digital & Virtual Care Funding

- Remote Care Monitoring
- Virtual Urgent Care
- Surgical Transitions
- Virtual Home & Community
- Integrated Virtual Care
- Virtual Primary Care
- Portals
- Online Appointment Booking
- Ontario Standards of Care ...
- Spread high impact models

Digitally Enabled Navigation Tool

- Will bring Ontarians more modern, accessible and digitally-enabled health care choices
- One website and one number to call and support Ontarians' health care journey, when and where they need it...
- Live in early 2022 with a codesigned roadmap

 $\underline{https://www.ontariohealth.ca/our-work/digital-standards/provincial-funding-opportunities}$

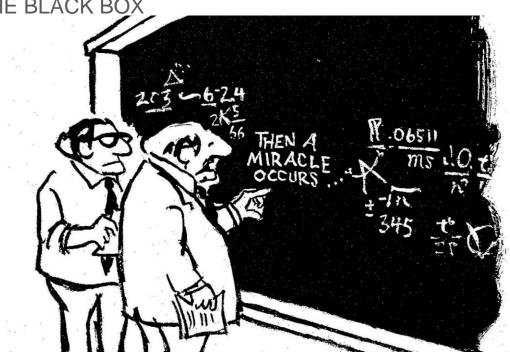
The Next Big Thing

Laura Desveaux PhD, PT

laura.desveaux@thp.ca

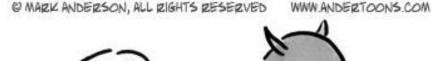
lauradesveaux

IT'S NOT A QUESTION OF WHAT, IT'S A QUESTION OF HOW



BEFORE WE BUILD IT, WE NEED TO KNOW HOW IT WORKS

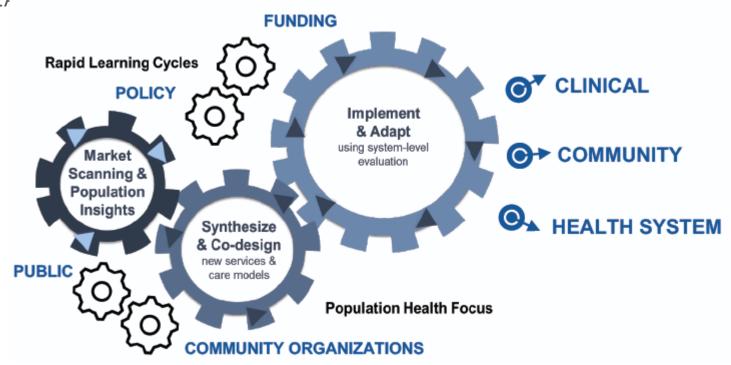
WARK ANDERSON, ALL RIGHTS RESERVED WWW.ANDERTOONS.COM



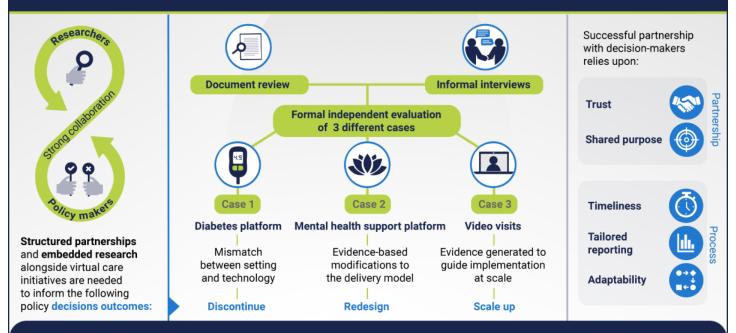
"I'm here about the details."

VALIDATE AND REFINE ASSUMPTIONS THROUGH TESTING

• A LEADY TO THE ALTERNATION OF THE ALACO SELECTION OF THE ALACO SEL



How Do You Design Research to Truly Inform Decision-Making?



Summary:

Embedded research partnerships help close the gap between science and policy. Structured communication drives collaborative problem-solving and contextualizes emerging insights to increase relevance.

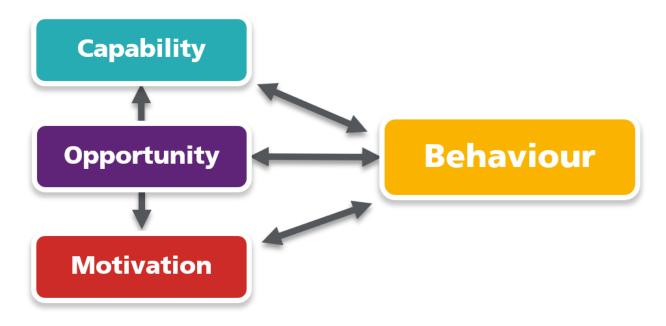
Desveaux L, Budhwani S, Stamenova V, et al. Closing the Virtual Gap in Health Care: A Series of Case Studies Illustrating the Impact of Embedding Evaluation Alongside System Initiatives J Med Internet Res 2021;23(9):e25797

URL: https://www.jmir.org/2021/9/e25797

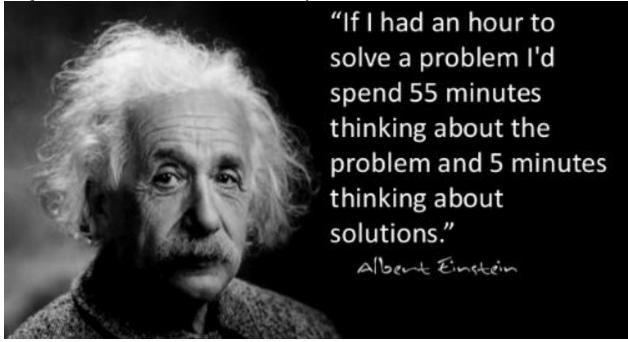
DOI: 10.2196/25797

HEALTH AND HEALTHCARE ARE DRIVEN BY HUMAN BEHAVIOUR

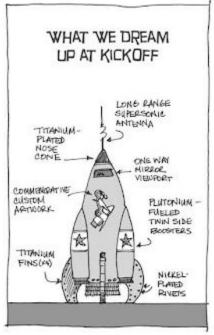
What drives behaviour?

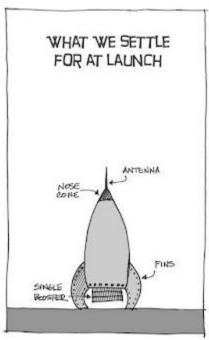


Systematically listen and assess. Then respond.



Be clear about the purpose and design for it







BONUS 2015

Applied Artificial Intelligence in Health: From Compute to Care

Muhammad Mamdani, PharmD, MA, MPH

Vice President – Data Science and Advanced Analytics, Unity Health Toronto

Director – Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM)

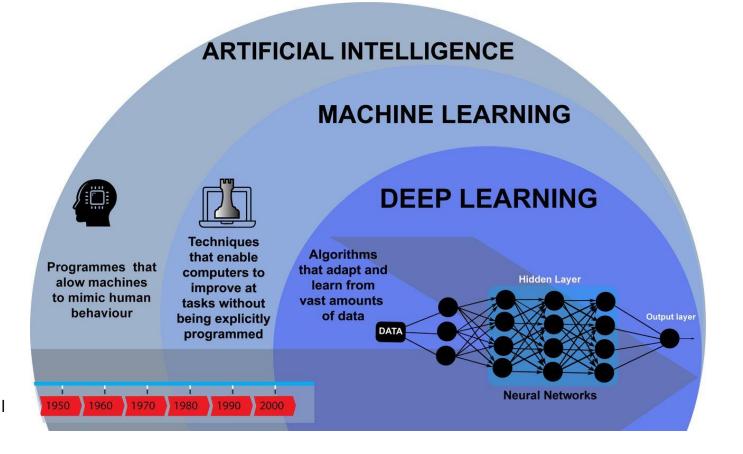
Faculty Affiliate – Vector Institute

Adjunct Senior Scientist - Institute for Clinical Evaluative Sciences

Professor - University of Toronto

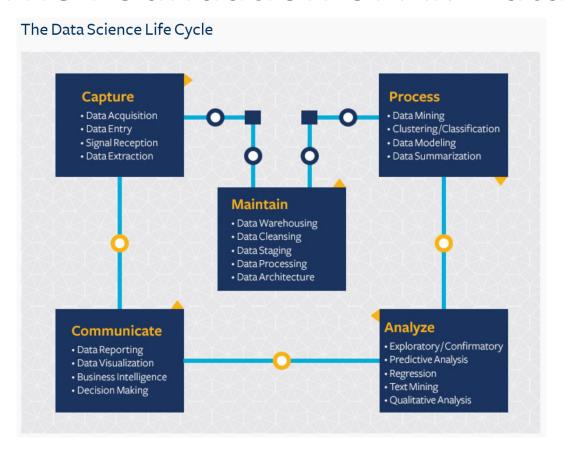
October 2021

Terminology

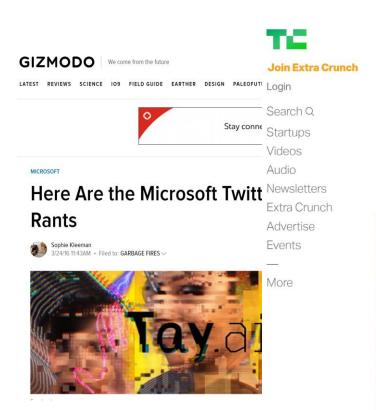


Marvao et al BMJ 2020

The Foundation of AI: Data



Learning from Al Failures



Microsoft

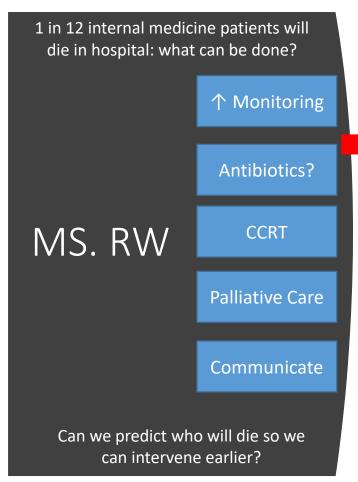
Offset nonprofit IT costs with integrated cloud services Get started with Microsoft Azure

Google medical researchers humbled when Al screening tool falls short in real-life testing

Devin Coldewey @techcrunch / 5:03 pm EDT • April 27, 2020

Comment

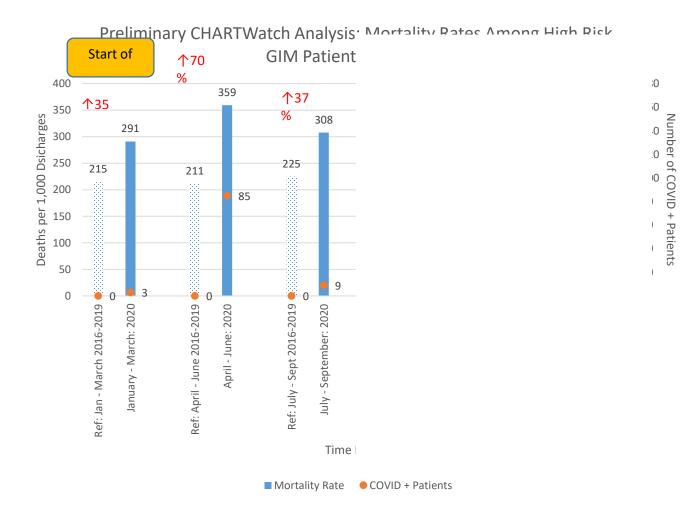
Health AI Examples in Action



- Had diagnostic procedure: ERCP (endoscopic retrograde cholangiopancreatography)
- MD called at 18:30

Ms RW had shortness of breath, MD ordered chest cx-ray and labs

- vital signs checked twice overnight (midnight and
- distress, patient transferred to stop up unit and
- Ms. RW did not want ICU and died in step-up that
- deterioration "We would never have left her



Some Considerations

- Privacy and use of data for quality improvement: identified vs de-identified
- Transparency
 - Notify the clinical team, patient, caregivers, all of the above if high risk status?
- Unintended consequences
 - What if ICU admissions increase?
 - Self-fulfilling prophecy problem adverse behaviours resulting from model predictions
- Risk and liability
 - What happens when the clinician doesn't agree with the AI prediction and someone dies?
- Intent of AI: prediction vs prescription; supplemental with human decision-making
- Trusting AI
 - Explainability vs Demonstrating Better Performance Than the User
- Overreliance

Al Examples in Population Health and Therapeutics

www.nature.com/scientificreports

Check for updates

ARTICLE Predicting a with machin

Mathieu Rayaut^{1,2}, Hame Gary F. Lewis^{6,7}, Alanna V

> Across jurisdictions, go healthcare system. We complications using ac Decision Tree model w Discrimination was ass population subgroups. hypoglycemia, tissue in sources and had stron performance model to machine learning and management.

npj Digital Medicine (2)

INTRODUCTION

The global diabetes burn million people in 2013 to diabetes have a higher ris such as hyperglycemia, n eye damage, and card population^{2,3}. Furthermore are a major contributor diabetes, particularly du department visits^{4,5}. Thus, predicting deverse outcomes due to

scientific reports

Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2 leading to universal blueprints for vaccine designs

Brandon Malone^{2,3}, Boris Simovski^{1,3}, Clément Moliné^{1,3}, Jun Cheng², Marius Gheorghe¹, Hugues Fontenelle¹, Ioannis Vardaxis¹, Simen Tennøe¹, Jenny-Ann Malmberg¹, Richard Stratford¹ & Trevor Clancy¹™

The global population is at present suffering from a pandemic of Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The goal of this study was to use artificial intelligence (AI) to predict blueprints for designing universal vaccines against SARS-CoV-2, that contain a sufficiently broad repertoire of T-cell epitopes capable of providing coverage and protection across the global population. To help achieve these aims, we profiled the entire SARS-CoV-2 proteome across the most frequent 100 HLA-A, HLA-B and HLA-DR alleles in the human population, using host-infected cell surface antigen presentation and immunogenicity predictors from the NEC Immune Profiler suite of tools, and generated comprehensive epitope maps. We then used these epitope maps as input for a Monte Carlo simulation designed to identify statistically significant "epitope hotspot" regions in the virus that are most likely to be immunogenic across a broad spectrum of HLA types. We then removed epitope hotspots that shared significant homology with proteins in the human proteome to reduce the chance of inducing off-target autoimmune responses. We also analyzed the antigen presentation and immunogenic landscape of

Artificial int health su detectio moni

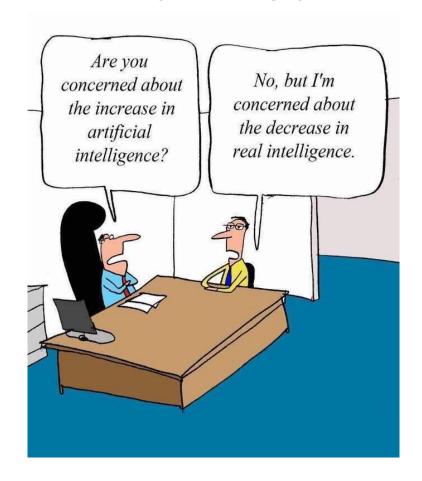
Daniel Zeng,

Artificial intelligence (AI) techniq and early warning, trend predicti health surveillance and response t sparsity, lack of positive training measures, and interwoven depend through contact and social networ niques. Recent years have seen tr deep learning-based models, con tematic review of these recent adv response challenges.

health response

Keywords: AI-enabled public hea

Thank You!



The Next Big Thing

Perspectives from Ophthalmology

CAPT Annual Conference

Dr. Tina Felfeli is a resident physician in the **Department of Ophthalmology and Vision Sciences, University of Toronto**.

She completed her medical school training at University of Toronto where she received the J. P. Boley Prize in Ophthalmology for the highest academic standing in her graduating class.

Currently, she is completing a PhD degree in Clinical Epidemiology at the **Institute of Health Policy, Management and Evaluation**, **University of Toronto** as a part of the Integrated Physician-Scientist program.

01

02

03

04

05

Understanding Disease Patterns

using health administrative data

Access to Eye Care

with automated and portable devices

Resource Planning

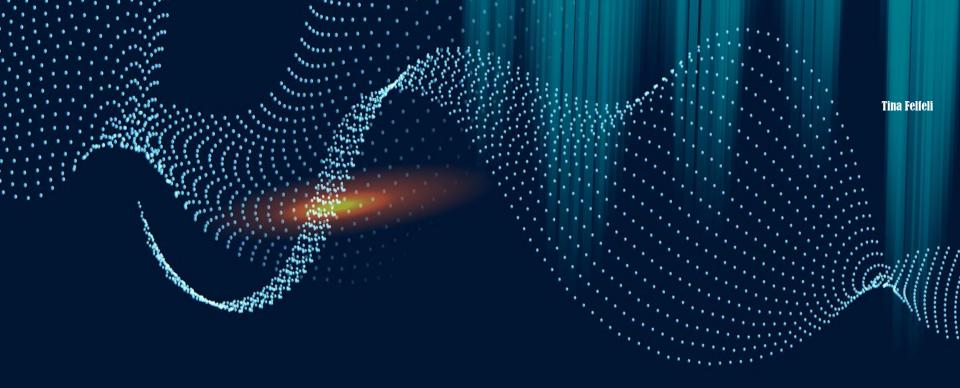
using modelling

Personalized Treatment Options

using biomarkers and Al

Surgical Performance

enhanced with AI



01 Understanding Disease Patterns

Using health administrative data

Burden of Diabetic Retinopathy

Diabetic Retinopathy is the leading cause of blindness among adults aged 20-74 years.

2.5 million

Canadians have been diagnosed with diabetes mellitus.

35%

of those with diabetes have diabetic retinopathy.

Diabetic Retinopathy Screening Guidelines

Type 1

Type 2

Initial Screen

5 years after diagnosis in all individuals ≥15 years

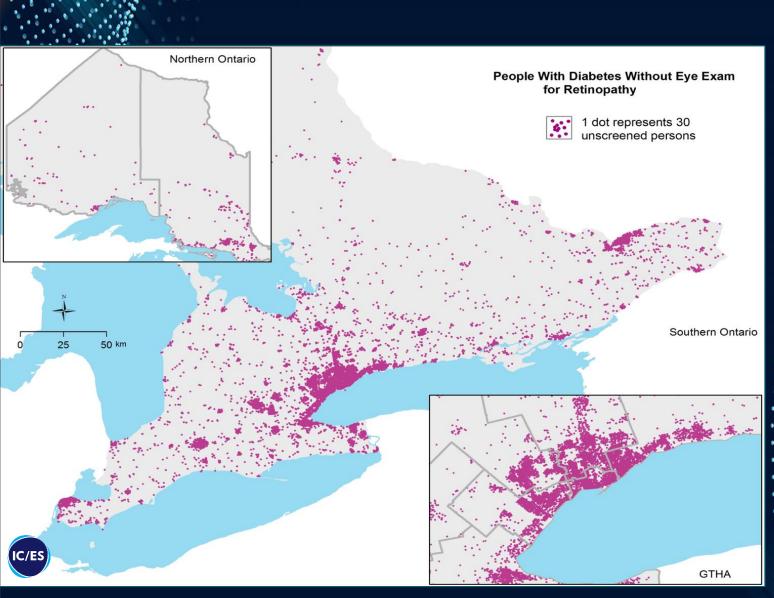
children, adolescents and adults at diagnosis

Repeat Screen

rescreen annually

rescreen every 1 to 2 years

Diabetes Canada Clinical Practice Guidelines Expert Committee.



Felfeli T, et al. Can J Ophthalmol. 2019 Apr;54(2):203-211.

Tina Felfeli

Diabetic Retinopathy Screening in Ontario

1/3
of patients with diabetes in Ontario have not been screened.

risk of for young adults, immigrants and those not under the care of family physicians.

Felfeli, T, et al., presented at the Association for Research in Vision and Ophthalmology annual meeting which took place virtually in May 2021 and the American Retina Society annual meeting virtually in October 2021.

Non-Infectious Uveitis

- A broad group of over 30 intraocular inflammatory diseases.
- One of the leading causes of preventable blindness in young adults in Western countries.

38–200 per 100,000

is the estimated prevalence of non-infectious uveitis.

Referral characteristics and wait times for uveitis consultation at academic tertiary care centres in Toronto

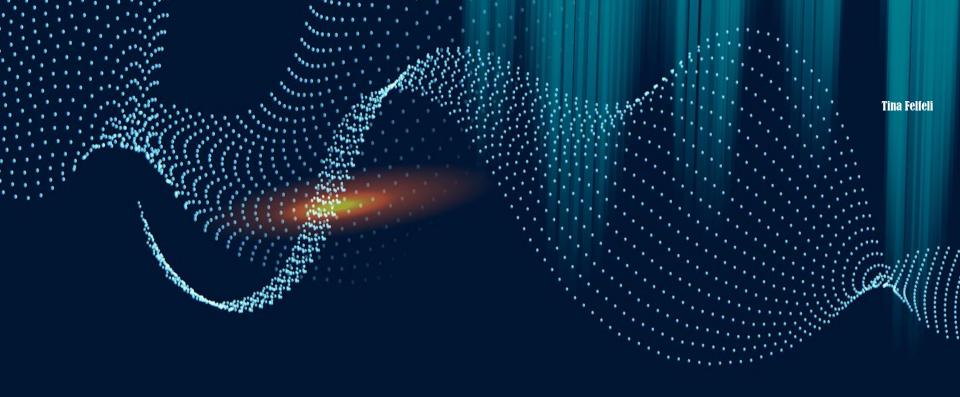
Felfeli T, et al. Can J Ophthalmol. 2018 Dec;53(6):639-645. doi: 10.1016/j.jcjo.2018.03.006.

Table 2—Characteristics of all uveitis cases according to anatomical classification					
Variable	Anterior Uveitis	Intermediate Uveitis	Posterior Uveitis	Panuveitis	Total
Number of referrals	55 (34%)	19 (12%)	61 (38%)	18 (11%)	159 (100%)
Age at presentation, years	47 ± 16 (15-79)	$40 \pm 18 (18-75)$	51 ± 19 (12-87)	$54 \pm 23 \ (19-96)$	48 ± 19 (12-96)
Mean ± SD (range)					
Female sex	34 (62%)	12 (63%)	35 (57%)	7 (39%)	91 (57%)
Laterality					
Unilateral	30 (55%)	6 (32%)	32 (53%)	7 (39%)	77 (48%)
Bilateral	23 (42%)	12 (63%)	26 (43%)	11 (61%)	73 (46%)
Unknown	2 (4%)	1 (5%)	3 (5%)	0 (0%)	9 (6%)

5,600

patients with non-infectious uveitis in Ontario

Reported prevalence of uveitis (38–200 per 100,000) Reported population of adults in Ontario of 14,745,04093



O2 Access to Eye Care

With automated and portable devices

Toronto Tele-Retinal Screening Program

2017

775 patient screens

27% of patients had DR

Felfeli T, et al. Can J Ophthalmol. 2019 Apr;54(2):203-211. 2019

1,374 patient screens

25% of patients had DR

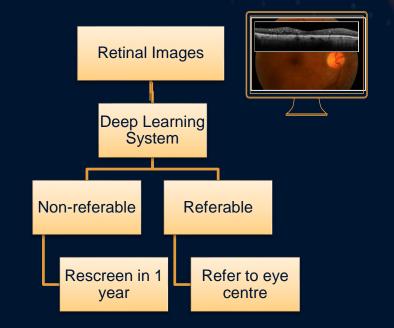
2021

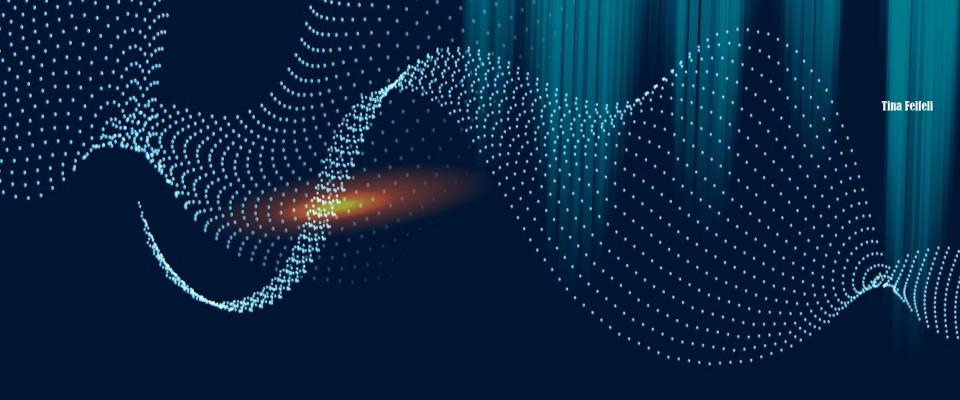
3,000+ patient screens

Cao J, **Felfeli T**, et al. Can J Diabetes. 2021 May 8:S1499-2671(21)00132-5.

Traditional Toronto Tele-Retinal Screening Program

Automated diabetic retinopathy screening





Resource Planning With modelling

Ophthalmic Surgeries in Ontario

Tina Felfeli

- On March 15, 2020, Ontario's Ministry of Health directed hospitals to begin a measured "ramping down elective surgeries and other non-emergent activities."
- In that month, over 56,000 patients were waiting for ophthalmological surgeries in Ontario.
- It is important to understand the impact of interrupting surgeries on the waiting time for ophthalmic surgeries.

Felfeli T, et al. CMAJ Open. 2021. In Press.

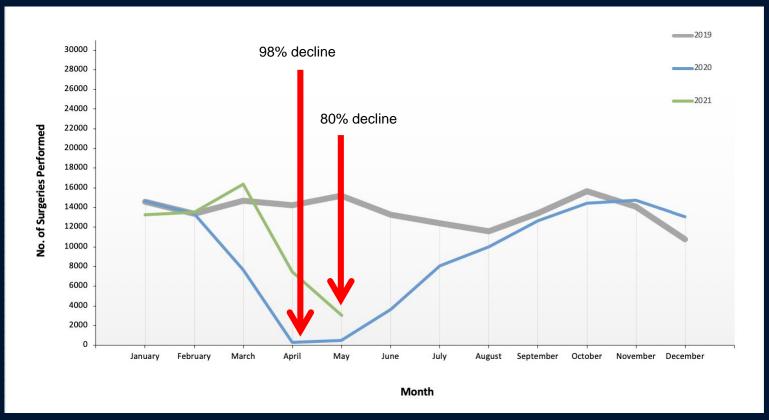
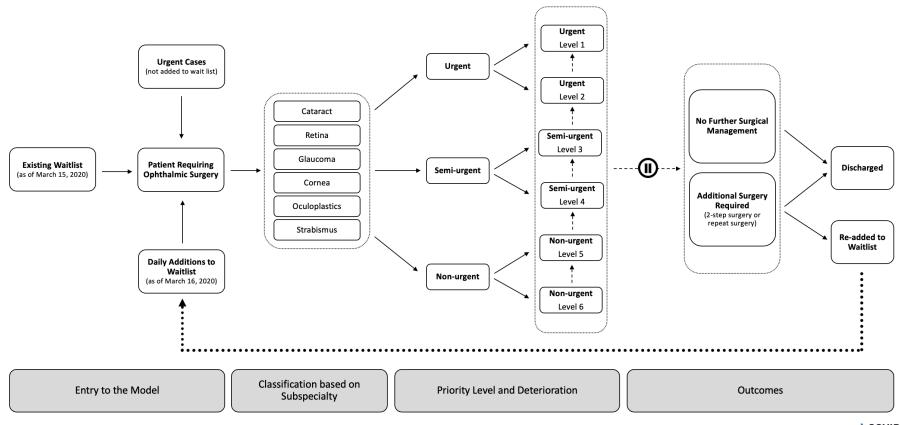


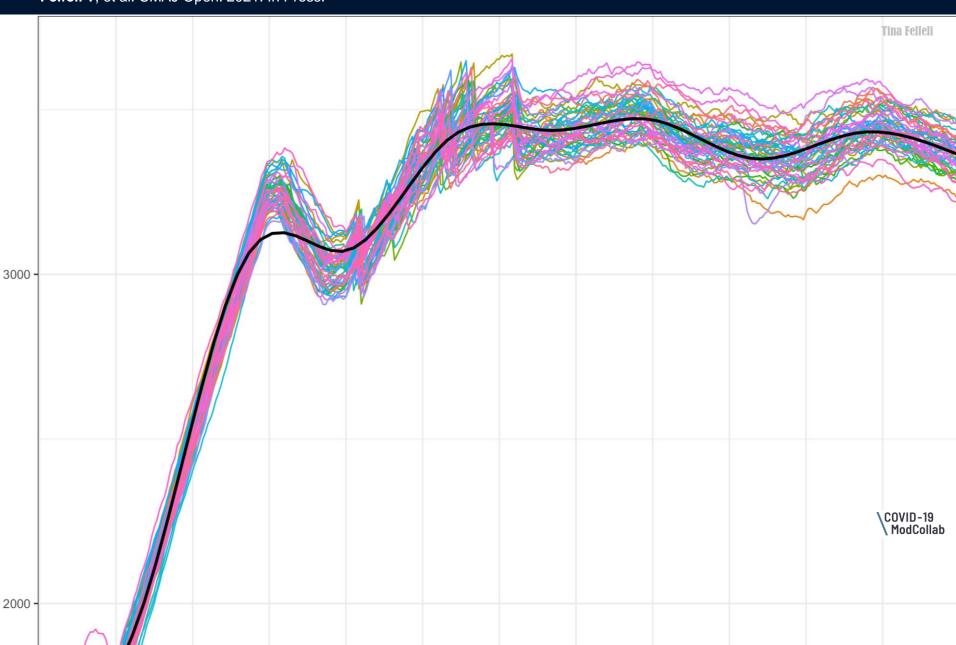
Figure depicts the comparison of the surgical throughput during the pandemic phase compared to historical data from 2019. The decline in surgical throughput was most notable for non-urgent surgeries compared to semi-urgent surgeries (semi-urgent, 76% decline versus non-urgent, 99% decline in May 2020 from May 2019).

Tina Felfeli

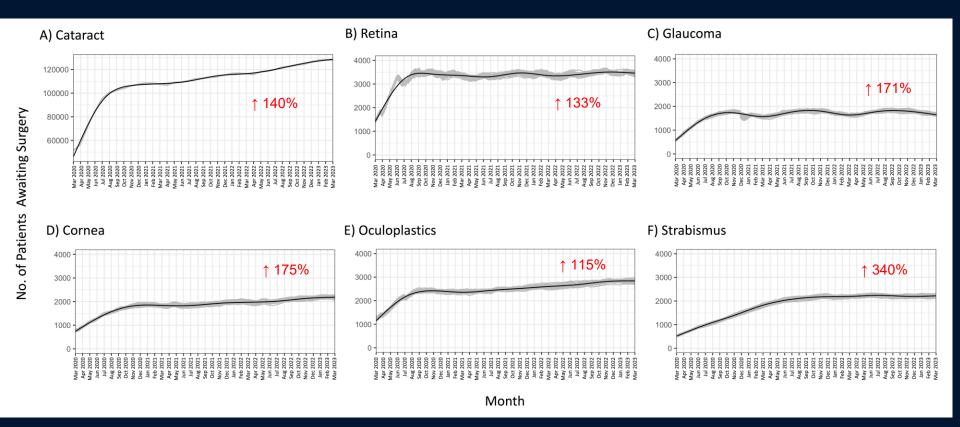


COVID-19 ModCollab

Felfeli T, et al. CMAJ Open. 2021. In Press.

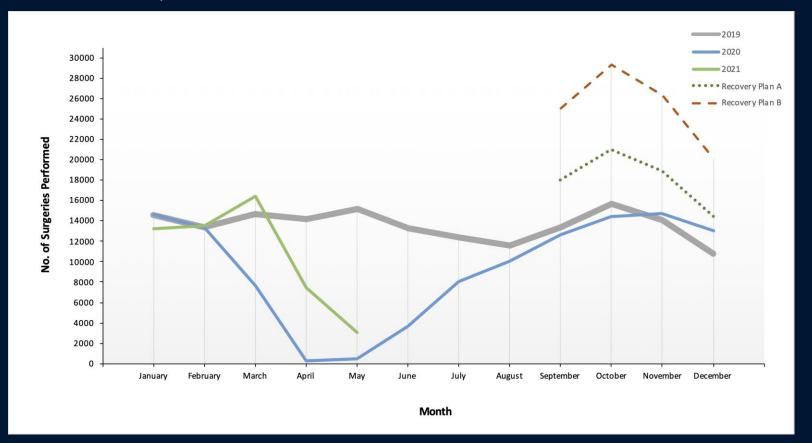


Monthly accumulation of patients awaiting surgery for all surgeries and subspecialty types since March 2020, to March 2022. The simulations were run 50 times (variations in projected estimated represented by grey lines) for a total of 240,000 patients. No., number.

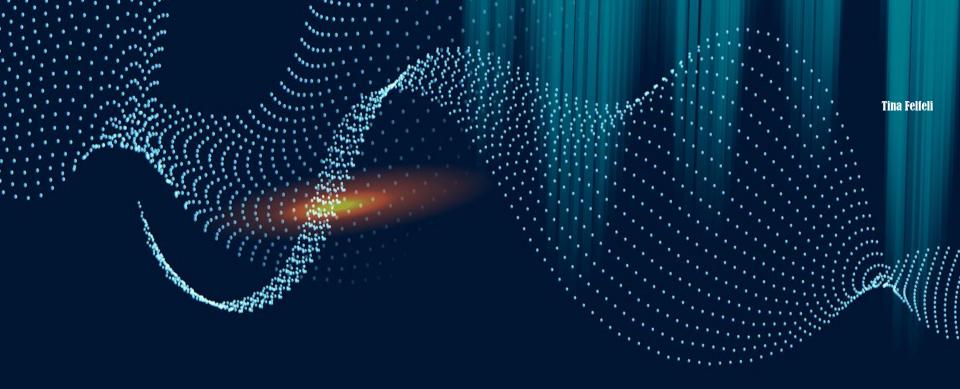


The total number of patients awaiting surgery at exactly 1 year following the pandemic increased by 108% (118,576 v 56,923) in February 2021 compared to February 2020.

Felfeli T, et al. CMAJ Open. 2021. In Press.

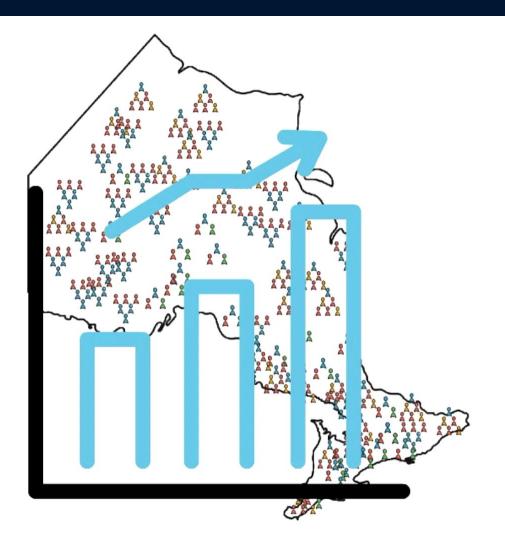


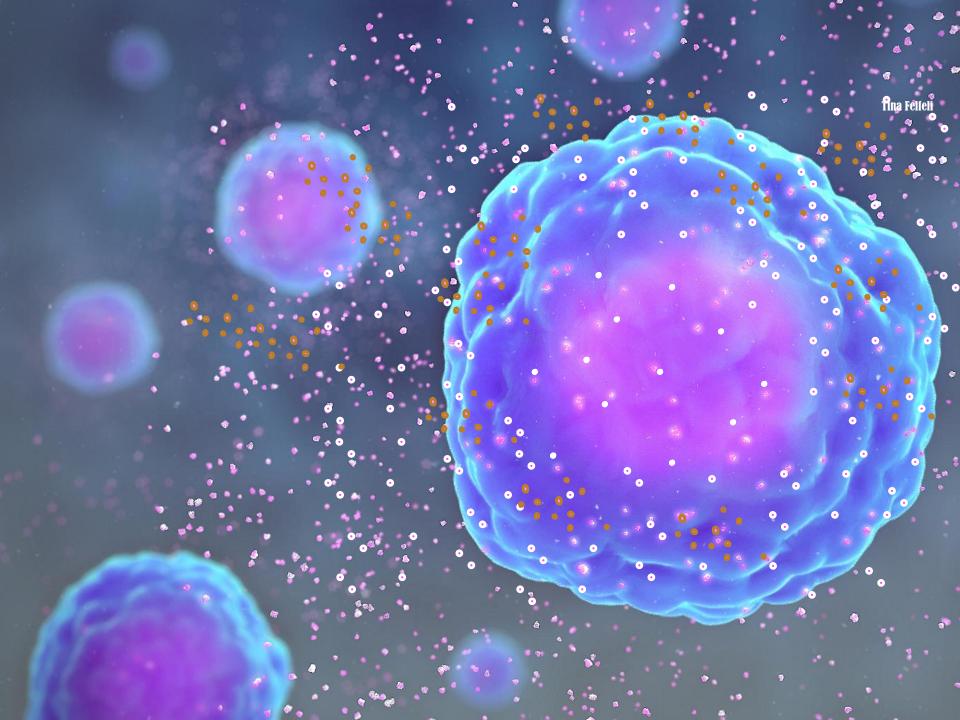
Timeline	Start on Sept/21
Over 2 years	34% (A)
Over 1 year	87% (B)

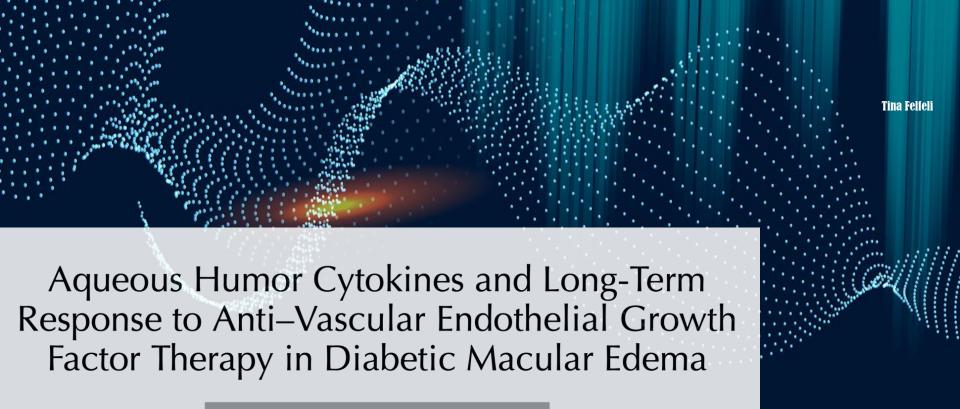


O4 Personalized Treatment Options

Using biomarkers and Al



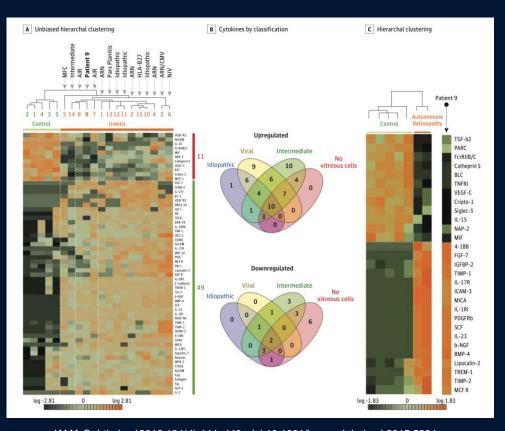




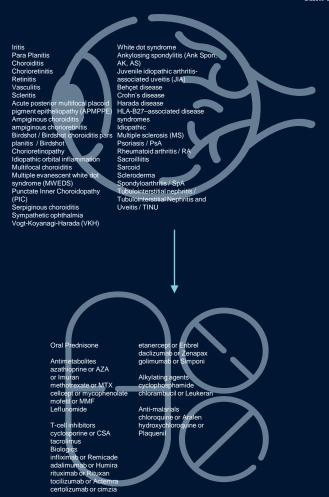
Felfeli T, et al. Am J Ophthalmol. 2019 Oct;206:176-183. doi: 10.1016/j.ajo.2019.04.002.

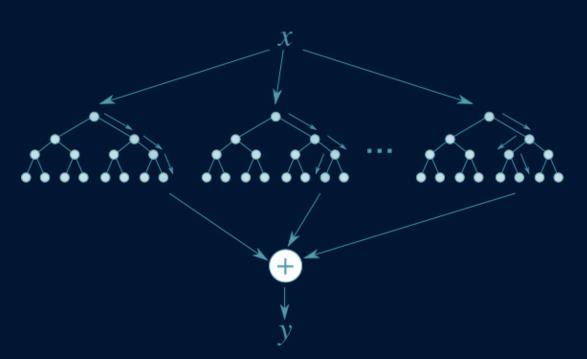
Early predictors of longterm outcomes

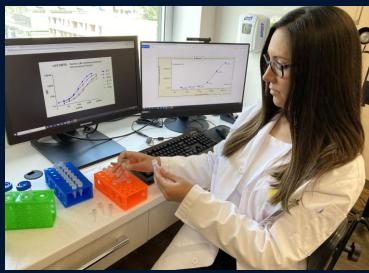
Tina Felfeli

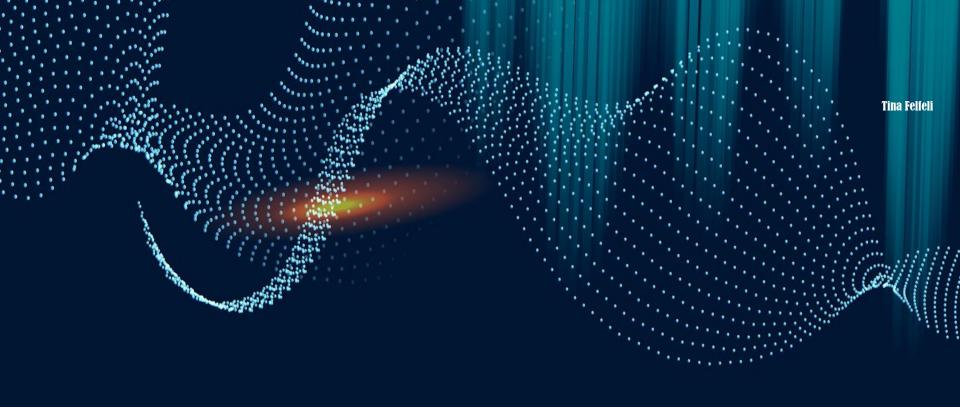


JAMA Ophthalmol.2016;134(4):444-448. doi:10.1001/jamaophthalmol.2015.5934









05 Surgical Performance

Enhanced with Al

- Virtual reality-based simulators (surgical training)
- Intraoperative guidance ('smart' operating microscope)
- Preoperative planning (artificial intelligence-driven calculations for IOL selection)
- Deep learning for robotic-assisted surgery (The Johns Hopkins Steady-Hand Eye Robot)

01

02

03

04

05

Understanding Disease Patterns

using health administrative data

Access to Eye Care

with automated and portable devices

Resource Planning

using modelling

Personalized Treatment Options

using biomarkers and Al

Surgical Performance

enhanced with AI

@TinaFelfeli